حل عددی مسائل مقدار ویژه به کمک روش هم محلی مبتنی بر توابع پایه ی شعاعی
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه ملایر - دانشکده علوم ریاضی
- author مصیب منصوری
- adviser محسن اسماعیل بیگی
- publication year 1393
abstract
در این پایان نامه، ابتدا توابع پایه ی شعاعی به اختصار معرفی می شود و برخی مزایا و معایب استفاده از این توابع بیان می گردد. در ادامه با معرفی مسائل مقدار ویژه ی ماتریسی و عملگری، به دنبال حل عددی این مسائل با استفاده از توابع پایه ی شعاعی می باشیم. به این منظور دو روش هم محلی سراسری و موضعی مبتنی بر توابع پایه ی شعاعی را مورد مطالعه قرار می دهیم. در حقیقت در این پایان نامه تلاش خواهیم کرد مزیت ها و قابلیت های روشهای بدون شبکه را در مقایسه با یک روش عددی مبتنی بر شبکه (مانند روش اجزای متناهی) بررسی نماییم.
similar resources
حل عددی دستگاه های مسائل مقدار مرزی مرتبه دوم به کمک روش تفاضلات متناهی- توابع پایه ای شعاعی
در سال های اخیر روش توابع پایه ای شعاعی به عنوان یک روش برای درونیابی و حل معادلات مورد استفاده قرار گرفته است. در این پایان نامه، یک طرح عددی بر مبنای توابع پایه ای شعاعی برای حل دستگاه های معادلات دیفرانسیل معمولی مرتبه دوم با شرایط مقدار مرزی ارائه می دهیم. در ابتدا مشتق های اول و دوم تابع براساس درونیاب توابع پایه ای شعاعی تقریب زده می شوند و سپس با استفاده از تقریب های به دست آمده به...
روش هم محلی توابع پایه ای شعاعی برای حل عددی معادلات انتگرال ولترا- فردهلم- همراشتاین
یک روش عددی بر اساس روش طیفی، برای حل عددی معادلات انتگرال ولترا- فردهلم- همراشتاین معرفی کرده ایم. انتگرال مورد بحث در فرمولهای مسائل، بر اساس قانون انتگرال گیری لژاندر- گاوس- لوباتو تقریب زده میشود.
15 صفحه اولحل معادلات ناویر- استوکس به کمک روشهای بدون شبکه توابع پایه شعاعی
معادلات ناویر- استوکس به طور گسترده در زمینههای مختلف علوم مانند مدل سازی جریانهای اقیانوسی، جریان جاری در یک لوله، جریان های اطراف یک بال و به طور کلی در دینامیک سیالات کاربرد دارند. در این مقاله روش بدون شبکه توابع پایه شعاعی برای حل این معادلات به کار گرفته خواهد شد به این ترتیب که ابتدا ایده منظم سازی برای تبدیل معادله مورد نظر به دستگاه معادلات دیفرانسیل معمولی مورد استفاده قرار می گیرد...
full textحل عددی معادله ی kdv با استفاده از روش هم مکانی و توابع پایه ی شعاعی
در این پایان نامه، روش هم مکانی بر اساس توابع پایه ی شعاعی برای حل عددی معادله ی kdv بررسی شده است. بررسی و پیاده سازی سه روش متفاوت گسسته سازی این مسأله، رهنمون ما در حل عددی معادلات مهمی چون mkdv و kdv-mkdv شد.
15 صفحه اولروش بدون شبکه مبتنی بر توابع پایه ای شعاعی برای حل مسائل وابسته به زمان
در این رساله از روش های بدون شبکه مبتنی بر توابع پایه ای شعاعی برای حل معادلات دیفرانسیل جزیی وابسته به زمان و بهبود آن ها استفاده شده است. ایده اصلی این روش ها تقریب تابع مجهول جواب به صورت یک ترکیب خطی از توابع پایه ای شعاعی می باشد. هر دو رده اصلی آزمودن جواب ها که مبتنی بر فرم قوی معادلات حاکم (روش های هم محلی) و فرم ضعیف معادلات حاکم (روش گالرکین) مورد بررسی قرار گرفته اند. برای حل معادلات...
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه ملایر - دانشکده علوم ریاضی
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023